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We consider the motion of a single quasi-geostrophic ellipsoid of uniform potential
vorticity in equilibrium with a linear background shear flow. This motion depends
on four parameters: the height-to-width aspect ratio of the vortex, h/r , and three
parameters characterizing the background shear flow, namely the strain rate, γ , the
ratio of the background rotation rate to the strain, β , and the angle from which the
shear is applied, θ . We generate the equilibria over a large range of these parameters
and analyse their linear stability. For the second-order (m = 2) modes which preserve
the ellipsoidal form, we are able to derive equations for the eigenmodes and growth
rates. For the higher-order modes we use a numerical method to determine the full
linear stability to general disturbances (m > 2).

Overall we find that the equilibria are stable over most of the parameter space
considered, and where instability does occur the marginal instability is usually
ellipsoidal. From these results, we determine the parameter values for which the
vortex is most stable, and conjecture that these are the vortex characteristics which
would be the most commonly observed in turbulent flows.

1. Introduction
Observations of the Earth’s atmosphere and oceans reveal a great number of

vortices at many different scales (Holton et al. 1995; Ebbesmeyer et al. 1986). These
vortices, or coherent regions of anomalous potential vorticity, interact in a variety
of ways, ranging from quasi-steady behaviour where the vortex only weakly feels
the effects of its surroundings, to strong turbulent interactions where vortices can
merge, split and filament. Despite their complicated interactions many vortices have
a relatively long lifespan, for example the Mediterranean salt lenses (Meddies) which
have been observed in many studies (Armi et al. 1989). These observations indicate
that certain vortices are highly stable to the effects of their surroundings. This has
fuelled an interest in the idealized problem of a single vortex subjected to the effects
of a background flow. This background flow, taken to be linear in spatial coordinates,
approximates the leading-order influence of surrounding vortices.

Initially this problem was considered only for the two-dimensional case of an
elliptical patch of constant vorticity (Kida 1981; Dritschel 1990). More recently
Zhmur & Shchepetkin (1991) and Meacham (1992) extended this problem to the three-
dimensional rotating stratified case where they studied an ellipsoidal vortex within
the quasi-geostrophic model. Meacham (1992) studied the stability of a freely rotating
ellipsoid of potential vorticity (PV) and found instabilities over a large range of the
parameter space characterizing the ellipsoid. However, recently Dritschel, Scott &
Reinaud (2005) have found that one of the unstable modes Meacham encountered
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is in fact stable, and overall their results indicate that the freely rotating ellipsoid
is widely stable. Miyazaki, Ueno & Shimonishi (1999) studied the stability of a
spheroid of uniform PV tilted by some inclination angle from the vertical axis. They
found that highly prolate spheroids are unstable if the inclination angle is large,
while oblate spheroids are unstable even if the inclination angle is very small. In
both cases the instability is non-ellipsoidal, i.e. it destroys the ellipsoidal form of the
vortex. Hashimoto, Shimonishi & Miyazaki (1999) derived the equations for the linear
stability of an ellipsoid in a two-dimensional strain field, and using these they studied
the cases of a pure strain field (when there is no background rotation) and a simple
shear flow (when the strain rate is equal to the background rotation). They found
that in a pure strain field, highly elongated ellipsoids are unstable to modes whose
order m is greater than 2, i.e. to non-ellipsoidal modes. In a simple shear flow they
found that a highly elongated ellipsoid whose major axis is perpendicular to the flow
direction is unstable, whereas any ellipsoidal vortex seems to be stable if the major
axis is parallel to the flow direction. Meacham et al. (1994) derived equations for the
evolution of an ellipsoid of uniform PV in a background flow with both horizontal
strain and vertical shear. They examined the stability for some special background
flows, either pure horizontal strain or pure vertical shear (in the absence of horizontal
strain).

To date, there has been no complete study of the combined effects of horizontal
strain and vertical shear on an ellipsoid of uniform PV. In this paper we will examine
this problem. The roots of our approach lie in a reformulation of the problem
introduced by McKiver & Dritschel (2003). In this reformulation, the system depends
on four parameters: the height-to-width aspect ratio of the vortex, h/r , and three
parameters that specify the background flow. Reinaud, Dritschel & Koudella (2003)
introduced a method for determining the steady equilibrium states for this system.
They determined possible equilibria over a wide range of the parameters and found
that vortices with aspect ratios of around h/r = 0.8 (in coordinates rescaled by f/N

where f and N are the constant Coriolis and buoyancy frequencies respectively) are
best able to survive the effects of the background flow. They also found h/r = 0.8 to be
the most commonly observed aspect ratio in high-resolution turbulence simulations
having large populations of vortices.

Here we will not only determine the steady states, but we will also analyse their
linear stability to both ellipsoidal and non-ellipsoidal disturbances over a far greater
range of the parameters than previously considered. In § 2 we present the equations
of motion and describe the method for determining the steady states of this system,
following Reinaud et al. (2003). In § 3.1 we derive the linear stability equations for
the second-order modes, i.e. the purely ellipsoidal disturbances. In § 3.2 we review the
method of Reinaud & Dritschel (2002) for analysing the full linear stability. In § 4
we present the results from both the ellipsoidal and full linear stability analyses. We
conclude in § 5.

2. The model problem
2.1. The quasi-geostrophic ellipsoid

The quasi-geostrophic (QG) model is an approximate model of large-scale mid-
latitude geophysical flows. It incorporates two important features underpinning these
geophysical flows: the effects of the Earth’s rotation and density stratification (lighter
fluid lying on denser fluid). Here we consider the Coriolis frequency, f , and the
buoyancy frequency, N , to be constant, allowing us to rescale the vertical coordinate
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by Prandtl’s ratio f/N . Then the QG equations can be written as

Dq

Dt
=

∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= 0, (2.1a)

∇2ψ = q, (2.1b)

u = L∇ψ, (2.1c)

where q is the potential vorticity, ψ is the streamfunction, u = (u, v) is the horizontal
velocity field and

L =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ . (2.2)

If we consider a uniform ellipsoid of PV placed at the origin, with semi-axis lengths

a, b and c, each of which is directed along the unit vectors â, b̂ and ĉ respectively,
and which is subjected to an external linear background flow of the form

ub(x, t) = Sb(t)x (2.3)

then it can be shown (McKiver & Dritschel 2003) that the evolution of the ellipsoid
is governed by

dB
dt

= SB + BST , (2.4)

where B and S are 3 × 3 matrices which we will refer to as the ‘shape’ matrix and
the ‘flow’ matrix respectively. The shape matrix encapsulates the size and orientation
of the ellipsoid and is given by

B = a2 ââT + b2 b̂b̂
T

+ c2 ĉĉT . (2.5)

The flow matrix can be decomposed into two parts, S = Sv + Sb, where Sv is the
self-induced part and Sb is the part due to the linear background flow. Sv is given
by

Sv = LPv (2.6)

where the 3 × 3 matrix Pv is obtained by inverting the Laplacian in equation (2.1b)
for the ellipsoid (a result found by Laplace 1784) and is

Pv = ξa ââT + ξb b̂b̂
T

+ ξc ĉĉT (2.7)

where

ξa = κvRD(b2, c2, a2), (2.8a)

ξb = κvRD(c2, a2, b2), (2.8b)

ξc = κvRD(a2, b2, c2). (2.8c)

RD is the elliptical integral of the second kind (see Appendix A) and κv = 4
3
πabcq is

the vortex ‘strength’. We obtain the background flow matrix Sb by Taylor expanding
the streamfunction due to a distant vortex to second order giving us (McKiver &
Dritschel 2003)

Sb = γ

⎛
⎝ 0 1

2
(1 + 3 cos 2θ ) + β 3

2
sin 2θ

1 − β 0 0
0 0 0

⎞
⎠ (2.9)
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Figure 1. Schematic showing the vortex configuration.

where the strain rate is defined by

γ ≡ κb/R
3 (2.10)

and β is the ratio of the background rotation rate to the strain rate, i.e.

β ≡ (κb + κv)/κb (2.11)

where κb is the strength of the background vortex and R is the distance between the
vortex centroids. The angle θ is defined such that the centroid of the background vortex
is located at (x, y, z) = (0, R cos θ, R sin θ) and ranges between 0◦ and 90◦ because of
symmetry — see figure 1. Without loss of generality we set the PV, q , of the ellipsoid
equal to unity in what follows. As noted in Reinaud et al. (2003), because κv > 0 when
β < 1 we must have γ < 0; similarly when β > 1 we require γ > 0. These two cases
correspond to opposite-signed and like-signed vortex interaction respectively. The
case where β → 1 implies |κb/κv| → ∞, corresponding to the special cases of adverse
shear for γ > 0 and cooperative shear for γ < 0. In all that follows when we examine
the case β = 1, we take γ > 0, i.e. the case of adverse shear.

The full model is thus governed by the evolution equation (2.4), the self-induced
flow matrix (2.6) and the background flow matrix (2.9). Owing to the lack of vertical
advection, the height of the vortex is conserved. Also the volume is conserved because
of incompressibility. Thus we can specify a particular vortex shape using its height-
to-width aspect ratio, h/r , where h is the half-height of the vortex and r is effectively
its mean radius. Thus our model depends on four parameters: h/r , β , θ and γ .

2.2. The steady states

The steady states for the ellipsoidal model are obtained by solving the following
nonlinear system of equations:

SB + BST = 0. (2.12)

Note that S depends on B through Sv, defined in equation (2.6). Equation (2.12) is
solved numerically using the iterative linear method described in Reinaud et al. (2003).
This uses an initial guess for the B matrix (usually a known nearby equilibrium; for
zero strain γ , B corresponds to a vortex with a circular cross-section and with its
axes aligned with the coordinate axes) and then uses the linearized form of equation
(2.12) to obtain the next iteration. Note that these equations cannot be inverted
directly; instead one equation is removed and conservation of volume is enforced to
close the equations (see Reinaud et al. 2003). The iterative process is repeated until
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Figure 2. Contour maps of χ(h/r, θ) for steady states at the turning point with β = 1.0. The
minimum and maximum contour values displayed are 0◦ and 40◦ respectively, and the contour
interval is 4◦. The contour corresponding to χ = 0◦ lies along the axis θ = 0◦, and thus cannot
be seen. The χ = 40◦ contour level is indicated.

the r.m.s. error, 	B , between the five independent components of B at successive
iterations is less than 10−10. Since the volume and the half-height of the ellipsoid
are conserved, the height-to-width aspect ratio h/r of the ellipsoid is unchanged
throughout the procedure. Having thus found a solution, the strain |γ | is increased
by a small amount |dγ | =10−4 and the procedure is repeated. If we find 	B > 1 or
perform more than 10000 iterations, the procedure is stopped. When this occurs, we
assume there is no steady state for the particular parameters considered.

For a given (h/r, β, θ), we have found steady states for values of γ up to a critical
turning point, γc, i.e. the strain value beyond which there appear to be no more
steady states. We consider both oblate and prolate vortices. For the oblate case,
we examine the aspect ratios h/r = k/10, where k = 1, 2, . . . , 10, and for the prolate
case h/r = 10/k, where k = 1, 2, . . . , 9. For each aspect ratio, we have considered
both opposite-signed interactions for −4 � β < 1 and like-signed interactions for
1 � β � 6. These values were chosen to be uniformly distributed in β with an
increment 	β =0.2. This represents a wide variation of the vortex strength ratio
κv/κb. The case when there is no background flow corresponds to |β| → ∞ and has
already been studied by Meacham et al. (1992), Miyazaki et al. (1999) and Dritschel
et al. (2005). For each value of β we consider 0◦ � θ < 90◦ in increments of 	θ =2◦.
No deformation of the vortex occurs for θ = 90◦, as this corresponds to two vertically
aligned vortices.

When γ = 0 the principal axes of the equilibrium vortices are aligned with the
coordinate axes. As |γ | increases, the axis originally aligned with the z-axis makes an
angle χ with respect to that axis in the (y, z)-plane (no tilt into the (x, z)-plane ever
occurs). In general the principle axes of the equilibrium vortices are either aligned
with the coordinate axes, or are tilted about the x-axis by an angle, χ , with respect
to the z-axis. In figure 2 we show χ(h/r, θ ) for the steady states at the turning
point γ = γc for the case β =1. When θ = 0◦ the principle axes are aligned with the
coordinate axes, i.e. χ = 0◦. For oblate vortices, h/r < 1, the tilt angle is small and
does not vary much with θ . The tilt angle is also small for prolate vortices when θ

is close to 0◦, but increases sharply as θ increases. The figure confirms that prolate
vortices are more sensitive to vertical shear than are oblate vortices. The latter tilt
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only weakly with increasing θ . The decrease of χ for increasingly prolate vortices is
due to weakening vertical shear at the turning point (see figure 7).

3. Linear stability analysis
Now we examine the stability properties of the steady states obtained. There are

various orders of modes, m =0, 1, 2, . . . , which correspond to increasing orders of
deformation. The zeroth-order mode corresponds to a change in volume, which is not
allowed because of incompressibility. The m =1 mode corresponds to the vortex being
translated while preserving its shape and orientation, and thus cannot destabilize the
vortex. The m =2 mode corresponds to a change in vortex shape which preserves its
ellipsoidal form, hence we refer to this as the ellipsoidal mode. For the ellipsoidal
mode we will derive analytical equations for the growth rates. To obtain results
for higher-order instabilities we use a numerical method described by Reinaud &
Dritschel (2002).

3.1. Ellipsoidal mode

In order to examine the linear stability of ellipsoidal disturbances we linearize
equation (2.4), writing the B matrix as follows:

B(t) = Be + B′(t), (3.1)

where Be is the equilibrium (steady-state) matrix and B′ is an infinitesimal
perturbation. Since B is a symmetric matrix, it has only six independent components,
and it is convenient at this stage to introduce the following short-hand notation for
the elements of B:

B =

⎛
⎝B1 B2 B3

B2 B4 B5

B3 B5 B6

⎞
⎠ =

6∑
k=1

JkBk, (3.2)

where the matrices Jk are

J1 =

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ , J2 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , J3 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , (3.3a)

J4 =

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ , J5 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , J6 =

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠ . (3.3b)

Using (3.2) and (3.3) we can write the Taylor expansion of the self-induced flow
matrix about the equilibrium as

Sv(B) = Sv(Be) +

5∑
k=1

B
′k ∂Sv

∂Bk

∣∣∣∣
B=Be

, (3.4)

using (3.2) (recall B ′6 = 0 since there is no vertical motion). Taking B′ = B̂eσ t and
substituting (3.1) and (3.4) into (2.4) we obtain

5∑
k=1

CkB̂k = σ B̂, (3.5)
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Figure 3. The frequencies σi and growth rates σr as a function of the strain rate γ for (a)
h/r =0.6, β = 0.8, θ = 70◦ and (b) h/r = 5.0, β = 1, θ = 0◦. The solid line and the dashed line
correspond to the growth rate and the frequency for the M2(1) mode, respectively. The dotted
line corresponds to the frequency of the M2(2) mode.

where

Ck =
∂Sv

∂Bk

∣∣∣∣
B=Be

Be + SJk + JkST + Be

∂Sv
T

∂Bk

∣∣∣∣
B=Be

. (3.6)

Note that the matrices, Ck , can be determined using a known formula for the derivative
of the self-induced flow matrix Sv with respect to Bk (see Appendix B for details).
Next we define the vector B̂ =(B̂1, B̂2, B̂3, B̂4, B̂5) and the 5 × 5 matrix M such that

Mk1 = Ck
11, Mk2 = Ck

12, Mk3 = Ck
13, Mk4 = Ck

22, Mk5 = Ck
23. (3.7)

Using these we can rewrite (3.5) to obtain the eigenvalue problem

MB̂ = σ B̂ (3.8)

whose eigenvectors and eigenvalues correspond to the ellipsoidal disturbances and
their growth rates. This eigenvalue problem can be solved using standard numerical
methods. The equilibrium is unstable if there exists an eigenvalue σ with a positive real
part, σr > 0, otherwise it is neutrally stable (all eigenmodes have σr = 0). Thus the real
and imaginary parts of σ correspond to the growth rate and frequency respectively. In
general the solutions are σ = 0, ±σ2(1), ±σ2(2) which correspond to the modes M2(0),
M2(1) and M2(2) identified in Hashimoto et al. (1999) who considered a vortex in a
horizontal strain (θ = 0◦), but here we have generalized their results to the case of ver-
tical shear. In figure 3 we plot the frequencies and the growth rates of the M2(1) modes
and frequencies of the M2(2) modes for two cases. In both cases the M2(1) mode
erupts before the turning point, whereas the M2(2) mode erupts at the turning point
as indicated by its frequency going to zero as γ → γc. This has been found for all the
cases considered over the entire parameter space. Thus there is at most one unstable
ellipsoidal mode which occurs before the turning point, namely the M2(1) mode.

3.2. Full linear stability method

For the full linear stability, i.e. for modes m � 2, we use a numerical method introduced
by Reinaud & Dritschel (2002) for general three-dimensional QG equilibria. This
method represents the equilibrium PV distribution by boundary contours in vertical
layers. In our case the boundary contours are ellipses. The boundary of each contour
is described by a horizontal position vector xe(φ) = (xe, ye) where φ is the travel time
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Figure 4. The growth rates σr as a function of the strain rate γ for h/r = 2.5 and a few
different values of β and θ as indicated. The solid and dashed curves correspond to the
ellipsoidal and non-ellipsoidal modes respectively. Note that the solid curve lies on top of one
of the dashed curves in all cases.

coordinate, i.e. a quantity proportional to the time that it takes a fluid particle to travel
along the equilibrium contour. The contour is perturbed by adding a perturbation, η,
in the normal direction to the contour. The evolution equation of this perturbation
can be obtained to first order (see Reinaud & Dritschel 2002) and by expanding the
perturbation in terms of a truncated Fourier series expansion in φ multiplied by an
exponential time factor, one can obtain the eigenvalue equation for the system.

For the results presented in § 4 we use M = 5 azimuthal modes and nc = 40 contours,
each of which is discretized into 120 points, connected by cubic splines. As found
in many previous works, the stability results prove highly insensitive to doubling
M , since the unstable modes (when they occur) are dominated by large-scale shape
deformations. A detailed discussion of the accuracy of the method, including typical
forms of the shape deformations, is given in Dritschel et al. (2005).

4. Stability results
From the ellipsoidal stability analysis, we know that there is at most one unstable

mode before the turning point. For the full stability problem, we consider the three
largest unstable modes (when there are any). In figure 4 we illustrate the growth
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rates as a function of γ for h/r = 2.5 and a few different values of β and θ as
indicated. The solid curve corresponds to the results of the purely ellipsoidal stability
analysis whereas the dashed curves were obtained using the numerical method for
the full stability. In the case of β < 1 (top two panels) there is a linear growth rate
which corresponds to the centroid mode, i.e. to the ellipsoid being translated without
deformation or change in orientation. As we do not consider this a real instability
we have eliminated this mode from the results presented in the next section. The
marginal instability is an ellipsoidal mode in each case except one, when β = 0.8 and
θ =66◦ where the marginal instability is found to be a third-order non-ellipsoidal
mode (m = 3).

4.1. Opposite-signed interactions (β < 1)

We first present the general stability results for opposite-signed vortices. In figure 5
we show contour maps of the magnitude of the strain rate found at the margin of
stability of the ellipsoidal mode, γe(β, θ), the marginal non-ellipsoidal mode, γn(β, θ)
(i.e. the higher-order mode with the smallest strain magnitude), and the turning-point
strain rate, γc(β, θ), for several values of the aspect ratio, h/r . Here the bold, dashed
and thin contours correspond to γe, γn and γc respectively. The contour interval is
0.01 and the minimum and maximum values plotted are 0.01 and 0.2.

From the contour plots we see that for the most oblate vortices (h/r = 0.2 and
h/r = 0.4) there are no instabilities before the turning point. Ellipsoidal instability
occurs for h/r = 0.6 for a small range of the parameter space but as h/r increases
the range of this instability increases. Non-ellipsoidal instabilities also become more
widespread with increasing aspect ratio, first occurring for h/r =0.8; however over
most of parameter space γn is greater than γe. Thus greater strain values are needed to
induce non-ellipsoidal instabilities than ellipsoidal ones and so the marginal instability
corresponds to the ellipsoidal mode. The gap between this marginal instability and
the turning point increases with increasing aspect ratio h/r . Also the magnitude
of this marginal strain, γm, increases as β approaches 1. Hence from the definition
of β ( = 1 + κv/κb), γm approaches a maximum as |κb/κv| → ∞, which implies that
interactions between vortices of extremely different sizes are least destructive.

From figure 5 we can also identify how the magnitude of the marginal strain,
γm = γe, varies with the angle θ . For h/r < 0.8, γm increases with increasing θ , but
for h/r � 0.8 it can be seen (cf. the troughs in the curves as a function of θ) that
γm decreases for a range of θ values, but eventually reaches a maximum as θ → 90◦.
The angle which corresponds to the minimum absolute value of γm will be referred
to as θm. For h/r < 1.0, θm = 0◦, whereas for h/r � 1.0, θm is between 55◦ and 75◦, i.e.
these are the most unstable angles. Because the strain is proportional to the inverse
cube of the separation distances between two vortices, this implies that vortices with
h/r � 1.0 which are vertically offset by an angle θm destabilize from the greatest
separation distances. By contrast, oblate vortices with h/r < 1.0 destabilize from the
greatest separation distance when they are vertically aligned (θm = 0).

Figure 5 exhibits a kink in the turning-point strain contours. This kink is associated
with a change in orientation of the ellipsoidal steady states as θ varies as can be seen
in figure 6. This occurs when B11 = B22, i.e. when two of the principal axes of the
ellipsoid switch.

Finally by inspecting figure 5 we are able to see how the marginal strain values
change with aspect ratio, h/r . Overall the largest strain values occur for aspect ratios
between 1.0 and 1.25. Thus it appears that vortices having an aspect ratio close to
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Figure 5. Contour maps of |γ (β, θ)| for various aspect ratios h/r for opposite-signed vortices
(β < 1). The contour values with the minimum magnitude are indicated, the contour value with
the maximum magnitude is 0.2, and the contour interval is 0.01 for all plots. The bold, dashed
and thin contours are the ellipsoidal, γe , non-ellipsoidal, γn, and turning point, γc , strain values
respectively.

unity are the most resilient, a result which compares well with the findings of Reinaud
et al. (2003).

4.2. Like-signed interactions (β � 1)

We next turn to the general stability of like-signed vortices. In figure 7 we show
contour maps of the turning-point strain rate γc(β, θ) for various height-to-width
aspect ratios. The contour interval is 0.005 and the minimum and maximum values
plotted are 0.005 and 0.2. The minimum strain contours appear on the right of the
plots and increase to the left. As was seen for opposite-signed vortices the strain
values increase as β approaches 1. One striking feature of like-signed vortices is that
there appear to be no instabilities before the turning point, i.e. the margin of stability
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(a) (b) (c)

Figure 6. The ellipsoidal steady states at the turning point for h/r = 1.0, β = −2 and (a) θ =
30◦, (b) θ = 45.5◦ and (c) θ =60◦. The images in the top row are projected onto the x-y plane,
the images in the bottom row are projected onto the x-z plane.

coincides with the turning point, γm = γc. In fact, for h/r � 1, there is a marginal
ellipsoidal instability before the turning point for θ =0◦. However, this instability,
which starts from σr = σi =0, suggests the existence of a nearby branch of solutions
with χ > 0. The beginning of this branch in fact corresponds to a turning point in the
solutions for θ > 0, a turning point which occurs well before that found for θ precisely
zero. Since in general vortex interactions are very unlikely to have θ precisely zero,
we do not consider this exceptional case further.

From figure 7 we can also identify how the marginal strain γm varies with the
angle θ . For h/r < 0.8, γm increases with increasing θ , but for h/r � 0.8 (as seen in
the troughs in the curves as a function of θ) γ decreases for a range of θ values,
before eventually reaching a maximum as θ → 90◦. For h/r � 0.8 the minimum γm

occurs for θ between 20◦ and 30◦, i.e. at these angles vortices are least resilient to the
background strain.

Again from the contour plots, we find that the greatest strain values occur for
vortices with aspect ratio near 0.8, in agreement with the findings of Reinaud
et al. (2003). Vortices with this aspect ratio are most resilient overall.

5. Conclusions
In this study, we have conducted a full linear stability analysis, using two methods:

one for general disturbances and one for ellipsoidal disturbances. Over nearly the
entire parameter space examined we found that the ellipsoidal steady states are stable,
and where instability does occur the dominant modes encountered are ellipsoidal.
Thus the ellipsoidal vortex in a linear background flow is a fairly robust model. The
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Figure 7. Contour maps of γc(β, θ) = γm(β, θ) for various aspect ratios h/r for like-signed
vortices (β � 1). The minimum contour values are indicated, the maximum contour value is
0.2, and the contour interval is 0.005 for all plots.

very few dominant non-ellipsoidal modes occur for opposite-signed prolate vortices
with β near 0.8 and θ between 56◦ and 70◦.

We also found that for vortices with aspect ratios greater than 0.8, the most
unstable vortices (i.e. the ones which destabilize at the smallest γm values) are found
in the ranges 55◦ � θ � 75◦ and 20◦ � θ � 30◦, for opposite- and like-signed vortices
respectively. Because the strain is proportional to the inverse cube of the separation
distances between two vortices, this implies that vortices which are vertically offset
by these θ values destabilize from the greatest separation distances, i.e. they are least
resilient. This agrees with the findings of Reinaud & Dritschel (2002) in which they
examined the merger of two identical uniform-PV vortices which are offset both
horizontally and vertically. They found that vortices which are moderately offset in
the vertical merge from a greater separation distance than vortices not offset vertically.
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For opposite-signed vortices we found that the most stable vortices have an aspect
ratio between 1.0 and 1.25, whereas for the like-signed vortices the most stable vortices
have an aspect ratio near 0.8 as was found by Reinaud et al. (2003).

The magnitude of the marginal strain increases as β approaches 1 for both opposite-
and like-signed vortices. Thus this is the most stable value of β and implies that vortex
interactions between vortices of greatly different sizes are least destructive, a result
which is observed in QG turbulence (Reinaud et al. 2003).

In this work we were able to solve for the ellipsoidal modes analytically using
the simple ellipsoid evolution equation. Interestingly the eigenmodes for this order
correspond to the shape matrix, B, whose components are proportional to the second-
order moments of the ellipsoid. One can speculate that the eigenmodes at any order,
m, are similarly related to the mth-order moments which are induced by perturbations
of that order. If this is the case then by determining how these general perturbations
evolve one could then use an approach like that used here for the ellipsoidal mode to
solve analytically the general stability problem for the ellipsoid.

Appendix A. Elliptical integrals
Let

∆ =
√

(t + α)(t + β)(t + γ ) (A 1)

where α, β and γ are positive constants. The elliptical integral of the first kind is

RF (α, β, γ ) =
1

2

∫ ∞

0

dt

∆
. (A 2)

Differentiation with respect to α, β and γ generates the elliptical integrals of the
second kind:

RD(β, γ, α) = −6
∂RF

∂α
=

3

2

∫ ∞

0

dt

(t + α)∆
(A 3a)

RD(γ, α, β) = −6
∂RF

∂β
=

3

2

∫ ∞

0

dt

(t + β)∆
(A 3b)

RD(α, β, γ ) = −6
∂RF

∂γ
=

3

2

∫ ∞

0

dt

(t + γ )∆
. (A 3c)

From the above expressions, and using d(t/∆) = dt/∆ − td∆/∆2 together with

d∆ =
1

2
∆

(
1

t + α
+

1

t + β
+

1

t + γ

)
dt, (A 4)

it is straightforward to show that

αRD(β, γ, α) + βRD(γ, α, β) + γRD(α, β, γ ) = 3RF (α, β, γ ). (A 5)

The derivatives of the elliptical integrals of the second kind yield

∂RD(β, γ, α)

∂α
= −9

4

∫ ∞

0

dt

(t + α)2∆
, (A 6a)

∂RD(γ, α, β)

∂β
= −9

4

∫ ∞

0

dt

(t + β)2∆
, (A 6b)

∂RD(α, β, γ )

∂γ
= −9

4

∫ ∞

0

dt

(t + γ )2∆
, (A 6c)



14 W. J. McKiver and D. G. Dritschel

∂RD(γ, α, β)

∂α
=

∂RD(β, γ, α)

∂β
= −3

4

∫ ∞

0

dt

(t + α)(t + β)∆
, (A 6d)

∂RD(β, γ, α)

∂γ
=

∂RD(α, β, γ )

∂α
= −3

4

∫ ∞

0

dt

(t + α)(t + γ )∆
, (A 6e)

∂RD(α, β, γ )

∂β
=

∂RD(γ, α, β)

∂γ
= −3

4

∫ ∞

0

dt

(t + β)(t + γ )∆
. (A 6f)

Taking the derivative of (A 5) with respect to α, β and γ we obtain

∂RD(β, γ, α)

∂α
= − 1

α

(
3

2
RD(β, γ, α) + β

∂RD(γ, α, β)

∂α
+ γ

∂RD(α, β, γ )

∂α

)
, (A 7a)

∂RD(γ, α, β)

∂β
= − 1

β

(
3

2
RD(γ, α, β) + α

∂RD(β, γ, α)

∂β
+ γ

∂RD(α, β, γ )

∂β

)
, (A 7b)

∂RD(α, β, γ )

∂γ
= − 1

γ

(
3

2
RD(α, β, γ ) + α

∂RD(β, γ, α)

∂γ
+ β

∂RD(γ, α, β)

∂γ

)
. (A 7c)

Hence there are only three independent derivatives of the elliptical integrals of the
second kind, i.e. ∂RD(γ, α, β)/∂α, ∂RD(β, γ, α)/∂γ and ∂RD(α, β, γ )/∂β .

Considering ∂RD(γ, α, β)/∂α only (since ∂RD(β, γ, α)/∂γ and ∂RD(α, β, γ )/∂β can
be deduced by cyclic symmetry), there are four different cases. For the case α �= β we
can write

1

(t + α)(t + β)
= − 1

α − β

(
1

t + α
− 1

t + β

)
. (A 8)

Using this we can write

∂RD(γ, α, β)

∂α
=

1

2(α − β)
[RD(β, γ, α) − RD(γ, α, β)] . (A 9)

If α = β <γ we cannot use the above formula but the integral becomes

∂RD(γ, α, β)

∂α
= −3

4

∫ ∞

0

dt

(t + α)3
√

(t + γ )
= I1 (A 10)

where the solution I1 is given by (Abramowitz & Stegun 1965)

I1 =
3

8(γ − α)
5
2

ln

[
1 +

√
γ − α

α
(γ +

√
γ − α)

]
+

(2γ − 5α)
√

γ

4α2 (α − γ )2
. (A 11)

If α < β = γ then the solution is

∂RD(γ, α, β)

∂α
= I2 (A 12)

where I2 (Abramowitz & Stegun 1965) is

I2 =
3

8 (γ − α)
5
2

[
π

2
− sin−1

(
2α

γ
− 1

)]
− (γ − 2α)

√
α

4γ 2 (γ − α)2
. (A 13)

If α = β = γ then

∂RD(γ, α, β)

∂α
=

∂RD(β, γ, α)

∂γ
=

∂RD(α, β, γ )

∂β
= −3

4

∫ ∞

0

dt

(t + α)7/2

=
3

10
α−5/2. (A 14)
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Appendix B. Derivative of the self-induced flow matrix
Here we show how to determine the derivative of the self-induced flow matrix

Sv = LPv with respect to the elements of the matrix B. As L is a constant matrix
we only need to determine the derivative of the symmetric matrix Pv which can be
written as

Pv = ξa ââT + ξb b̂b̂
T

+ ξc ĉĉT (B 1)

where â, b̂, ĉ are the unit vectors along the ellipsoid axes and ξa , ξb, ξc are given in
terms of the elliptical integrals of the second kind as follows:

ξa = κvRD(b2, c2, a2), ξb = κvRD(c2, a2, b2), ξc = κvRD(a2, b2, c2), (B 2)

where κv is the vortex strength. Taking the derivative of (B 1) with respect to the B
matrix elements Bk gives

∂Pv

∂Bk
=

∂ξa

∂Bk
ââT + ξa

∂ â
∂Bk

âT + ξa â
∂ âT

∂Bk
+

∂ξb

∂Bk
b̂b̂

T
+ ξb

∂ b̂
∂Bk

b̂
T

+ ξb b̂
∂ b̂

T

∂Bk
+

∂ξc

∂Bk
ĉĉT + ξc

∂ ĉ
∂Bk

ĉT + ξc ĉ
∂ ĉT

∂Bk
. (B 3)

Now, since ∂B/∂Bk = Jk , and using the eigen-relations Bâ = a2 â, etc., together

with the complementary relations âT B = a2 âT , where â, b̂ and ĉ are orthonormal
vectors, we find

∂a2

∂Bk
= âT Jk â,

∂b2

∂Bk
= b̂

T
Jk b̂,

∂c2

∂Bk
= ĉT Jk ĉ. (B 4)

The derivatives of the unit vectors, like the derivatives of the squared axis lengths,
are obtained by differentiating the eigen-relations Bâ = a2 â, etc., giving

Jk â + B ∂ â
∂Bk

=
∂a2

∂Bk
â + a2 ∂ â

∂Bk
, (B 5a)

Jk b̂ + B ∂ b̂
∂Bk

=
∂b2

∂Bk
b̂ + b2 ∂ b̂

∂Bk
, (B 5b)

Jk ĉ + B ∂ ĉ
∂Bk

=
∂c2

∂Bk
ĉ + c2 ∂ ĉ

∂Bk
. (B 5c)

Left multiplying (B 5a) by b̂
T

and ĉT , (B 5b) by âT and ĉT , and (B 5c) by âT and b̂
T
,

we obtain

b̂
T

Jk â = (a2 − b2)b̂
T ∂ â
∂Bk

, ĉT Jk â = (a2 − c2)ĉT ∂ â
∂Bk

, (B 6a)

âT Jk b̂ = (b2 − a2)âT ∂ b̂
∂Bk

, ĉT Jk b̂ = (b2 − c2)ĉT ∂ b̂
∂Bk

, (B 6b)

âT Jk ĉ = (c2 − a2)âT ∂ ĉ
∂Bk

, b̂
T

Jk ĉ = (c2 − b2)b̂
T ∂ ĉ
∂Bk

. (B 6c)

Since â, b̂ and ĉ are unit vectors, their derivatives are perpendicular to them. Hence,
the above equations are sufficient to determine the required derivatives:

∂ â
∂Bk

= λk
ab b̂ − λk

ca ĉ,
∂ b̂
∂Bk

= λk
bc ĉ − λk

ab â,
∂ ĉ

∂Bk
= λk

ca â − λk
bc b̂, (B 7a–c)
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where we have the following scalars:

λk
ab =

âT Jk b̂
a2 − b2

, λk
bc =

b̂
T

Jk ĉ
b2 − c2

, λk
ca =

ĉT Jk â
c2 − a2

. (B 8a–c)

The derivatives of ξa , ξb and ξc are

∂ξa

∂Bk
=

∂a2

∂Bk

∂ξa

∂a2
+

∂b2

∂Bk

∂ξa

∂b2
+

∂c2

∂Bk

∂ξa

∂c2
, (B 9a)

∂ξb

∂Bk
=

∂a2

∂Bk

∂ξb

∂a2
+

∂b2

∂Bk

∂ξb

∂b2
+

∂c2

∂Bk

∂ξb

∂c2
, (B 9b)

∂ξc

∂Bk
=

∂a2

∂Bk

∂ξc

∂a2
+

∂b2

∂Bk

∂ξc

∂b2
+

∂c2

∂Bk

∂ξc

∂c2
, (B 9c)

where the derivatives of the squared axis lengths are given by (B 4) and the derivatives
of ξa , etc. are obtained using derivatives of the elliptical integrals given in Appendix A
and derivatives of the vortex strength, κv , i.e.

∂κv

∂a2
=

κv

2a2
,

∂κv

∂b2
=

κv

2b2
,

∂κv

∂c2
=

κv

2c2
. (B 10)

Finally using (B 4), (B 7) and (B 9) in (B 3) gives

∂Pv

∂Bk
= MQkMT (B 11)

where M is the matrix whose columns are the unit vectors â, b̂ and ĉ, and the matrices
Qk , k =1, . . . , 5, are defined as follows:

Qk =

⎛
⎜⎜⎜⎜⎝

∂ξa

∂Bk
λk

ab(ξa − ξb) λk
ca(ξc − ξa)

λk
ab(ξa − ξb)

∂ξb

∂Bk
λk

bc(ξb − ξc)

λk
ca(ξc − ξa) λk

bc(ξb − ξc)
∂ξc

∂Bk

⎞
⎟⎟⎟⎟⎠ . (B 12)

This form for the matrices Qk is singular when two of the axis lengths are equal.
However using (A 8), (A 9) and (B 10) one can show that

λk
ab(ξa − ξb) = âT Jk b̂

(
2
∂ξa

∂b2
− ξa

b2

)
, (B 13a)

λk
bc(ξb − ξc) = b̂

T
Jk ĉ

(
2
∂ξb

∂c2
− ξb

c2

)
, (B 13b)

λk
ca(ξc − ξa) = ĉT Jk â

(
2

∂ξc

∂a2
− ξc

a2

)
. (B 13c)

As the derivatives of ξa , ξb and ξc can be evaluated for all values of a, b and c (see
Appendix A) we can thus determine the Qk matrices.

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.

Armi, L., Herbert, D., Oakey, N., Price, J., Richardson, P., Rossby, T. & Ruddick, B. 1989 Two
years in the life of a mediterranean salt lens. J. Phys. Oceanogr. 19, 354–370.

Dritschel, D. G. 1990 The stability of elliptical vortices in an external straining flow. J. Fluid Mech.
210, 223–261, 1990.



Stability of a quasi-geostrophic ellipsoidal vortex in shear flow 17

Dritschel, D. G., Scott, R. K. & Reinaud, J. N. 2005 The stability of quasi-geostrophic ellipsoidal
vortices. J. Fluid Mech. 536, 401–421.

Ebbesmeyer, C. C., Taft, B. A., McWilliams, J. C., Shen, C. Y., Riser, S. C., Rossby, H. T.,
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